Vertex colorings without rainbow subgraphs

نویسندگان

  • Wayne Goddard
  • Honghai Xu
چکیده

Given a coloring of the vertices of a graph G, we say a subgraph is rainbow if its vertices receive distinct colors. For graph F , we define the F -upper chromatic number of G as the maximum number of colors that can be used to color the vertices of G such that there is no rainbow copy of F . We present some results on this parameter for certain graph classes. The focus is on the case that F is a star or triangle. For example, we show that the K3-upper chromatic number of any maximal outerplanar graph on n vertices is bn/2c+ 1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vertex Colorings without Rainbow or Monochromatic Subgraphs

This paper investigates vertex colorings of graphs such that some rainbow subgraph R and some monochromatic subgraph M are forbidden. Previous work focussed on the case that R = M . Here we consider the more general case, especially the case that M = K2.

متن کامل

Forbidding Rainbow-colored Stars

We consider an extremal problem motivated by a paper of Balogh [J. Balogh, A remark on the number of edge colorings of graphs, European Journal of Combinatorics 27, 2006, 565–573], who considered edge-colorings of graphs avoiding fixed subgraphs with a prescribed coloring. More precisely, given r ≥ t ≥ 2, we look for n-vertex graphs that admit the maximum number of r-edge-colorings such that at...

متن کامل

Large Subgraphs in Rainbow-Triangle Free Colorings

Fox–Grishpun–Pach showed that every 3-coloring of the complete graph on n vertices without a rainbow triangle contains a set of order Ω ( n log n ) which uses at most two colors, and this bound is tight up to the constant factor. We show that if instead of looking for large cliques one only tries to find subgraphs of large chromatic number, one can do much better. We show that every such colori...

متن کامل

Edge-colorings avoiding rainbow and monochromatic subgraphs

For two graphs G and H , let the mixed anti-Ramsey numbers, maxR(n; G, H), (minR(n; G, H)) be the maximum (minimum) number of colors used in an edge-coloring of a complete graph with n vertices having no monochromatic subgraph isomorphic to G and no totally multicolored (rainbow) subgraph isomorphic to H . These two numbers generalize the classical anti-Ramsey and Ramsey numbers, respectively. ...

متن کامل

Properly colored subgraphs and rainbow subgraphs in edge-colorings with local constraints

We consider a canonical Ramsey type problem. An edge-coloring of a graph is called m-good if each color appears at most m times at each vertex. Fixing a graph G and a positive integer m, let f(m,G) denote the smallest n such that every m-good edge-coloring of Kn yields a properly edgecolored copy of G, and let g(m,G) denote the smallest n such that every m-good edge-coloring of Kn yields a rain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discussiones Mathematicae Graph Theory

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2016